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We present a new derivation of the convolution formula for the contributions of
nuclear binding to the structure functions measured in the deep inelnstic scattering
of leptons from nuclei. The derivation, which is manifestly covariant, gives a new
hinding cotrection which is numerically significant, and which improves the agreement
hetween theory and experiment at large . We conclude that nuclear binding eflects

are sufficient to explain the EMC effect at large z.
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L INTRODUCTION

The imporlance of nuclear binding to the classical European Muon Collsbotation
{EMQY} effect is still very much in question. On one hand, even {rom the beginning
thetr were many explanations for this effect hased on “new” physics associated wilh
the quark struclute of the nucleon 1], and on the other hand, early calculations which
produced large contributions from nuclear binding [2] are in doubt because of the
incorrert Lrealment of wave function normalization (sometimes teferred o as omission
ol the “flux factor”) [3]. Connected with there quentions in the role of piona, which
must he included somehow whenever nuclenr binding is discussed [4-6]. Recently it
has heen found that the high momentum components arising from correlations can
euhance the offect al Intge = |7, 8j, but these results atill [all somewhat short of the
~xperimental data [9, 19). Finally, there is uncertainty surrounding the derivation of
{he "smearing”, or convolulion formuia from which the nuclear binding cffects are
cnlentaled.  Attempts 1o derive it from the “instant form” of quantum mechanics
have difficulties trealing Lotentz covariance and cutrent conservation in a consistent
manner [11, 12}, and usunlly employ a rather ad hoc prescription introduced by de
Forest. [13]. The popular “lront form™ derivations {11, 14} employ spectral functions
which may he difficull o relate to the non-relativistic densities normally available
from nnclear structure models.

Negardless of the role which it will nitimately be found to play, it is essential
1o have a good treatment of nuclear binding. Fermi molion and nuclear binding are
minimal efects which will always be present in the EMC data, and il is essentinl to
knew 1he eontribations from these eflects hefore new physics can be extracted. To be
helievahle, nuclear binding must be calcultated in a covariant, gnuge invariani manner,
using a [arwalism in which there is a clear conneclion between the relativiatic spectral
fonciion which necessatily enters the caleulation and the non-relalivistic spectral
Iunetinn available Trom present nuclear Lheory.

tn this paper, we present a new derivation of this important formula. Gur method

is based on relativistic Feynman diagrams, in which covariance is manifest anrt exact
This method in fully developed and has already been applied to a treatment of the
{wo body problem [15, 16}, and extensions to the three [17] and many body problem
[18] are being developed. The formalism hne n smooth non-relativistic limit, and can
be used Lo Lrent clectromagnetic inleractions in a fully gauge invariant manner (18],
sa it is iden] for the calculation of binding contributions to the EMC effect. Using this
method, we obtrin & new convolution formula which includes mignificant new eflccta
which seem to have besn previously overlooked. Evaluntion of the new formmln for
rentintic chses with realistic parameters shows that nuclear binding can account for
the EMC effect for 2 > 0.5.

In this approach, deep inelastic scattering (D15) is described by relativistic Feyn-
man diagean:s in which both Lhe structure of the nucleon and the nuclear Larget are
deacribed by relativiatic verlex funclions in which one constituent iz off-shell, ne illus-
trated in Figs. 1a-c. The nucleon will be described by two such functions, Tk (p, m1)
and T§{p.p), describing valence and sen contributions, respectively. As Fig. Ia
suggests, the valence veriex function has two “spectators” while the sca function
{shown in Fig. 1b} has a minimum of four, and we assume that the internal degrees
of freedom of the spectators (either two or four) can be ignored, 8o thal each I'y ran
be expanded as & sum of tensor operators multiplied by invariant functions which
depend on p* and p} only, where py = pz or py. The structure of the nuclear target
is similacly deacribed by the vertex function Ua(F, Py} shown in Fig. le.

The use of verlex [unctions wilh one particle ofl-shell to describe nuclear structure
has been developed extensively for the two body problem, and provides a clear way to
describe Lhe relativistic structure of a bound state. The relativintic wave function of
the nucleon can be related to Lhe quantities ¥y = S, (p} [R{p. px ), whete S.{p)isthe
propagator of the virtuak quark, and X = V or 5. For the nuclens, the relation is ¥, =
Sp(P) Ta(P,Ps_1). These bound state wave funclions are manifestly covariant,

and entisfy (known) relativistic wave equations and normelization conditions. Onr



assumption that 1he speciator quarks or spectator nucleons can be treated as a single
system (with a variable mass) means that we may carry over all of this formaliam to
this problem.

The addilional approximations made in ihe derivation of our convolution formula

are common Lo almost asll other treatments of nucleas binding. We assume that

¢ final slate interactivns and meson exchange currents can be ignored, so that the

one hody current operator gives the leading contribution,

e interference lerms can be ignored, so that the cross section is the incohezent sum

of squared terms, as illustrated in Fig. 1d, and

a any explicit dependence of the vertex functions on the mase of the bound state
can be ignored, 10 that the vertex funclions describing the nucleon structure will

be assumed 1o have no direct dependence an the mass of the nucleon, P

It is known how to use final slate interactions and imeson exchange currents o insure
gauge invasinnce of inelastic processes [19], and the first of these assumptions means
thal any effects ansing from the gauge dependence of the plane wave processes are
assumed to vanish in the Bjorken limit. This assumption is supported by specific
estimates, when they exist |20], but is a subject for further study. The second as-
sumption has not been widely discussed and might alsa Lenefit from further study.
The third is the essence of the nuclear binding approximation, where it is assumed
1hatl 1he EMC effect can be explained by the binding and Fermi motion of nucleons
withoul assuming any change in their intrinsic structure. This ia the assumption we
hope to be lesting.

With these assumplions, the strnclure functions of the nucleus can be calculated
from the dingram shown in Fig. td This calculation will be carried out in Sec. 11,
and numerical results obtained from our new formula will be given and discussed in

See 10l Sec IV includes further discussion and conclusions.

I1. DERIVATION OF THE CONVOLUTION FORMULA
The inclastic crass section (21] from which the EMC data is oblained is
o t
I [V A le 2.1
dvdb ""{ » + Aty (2.1)
where o is the Mott cross section, and the structure function W, is & sum of the

three amplitudes Wy, = €§ W, ¢}, where A = 0, are the three polarization slates

of the virtual photon:
@ 1 2
MW= [w..,. Wi W] (2.2)
L

With the normalization implied by Eq. (2.2), the W, tensor for & spin zero nucleus

and a spin } residunl system of fixed mass AM,4_;, denoted by W:‘w can be obtained

directly from diagram {1d)
A dPia (M,.,_, -
S=\ag) | @y trace[A;, (Ps
Wo (2)\14) (2r)® \Ea race|Ajg,  (Pa-1)

X TP, Py s )Su( P} Hv'::, SutPIT AP Pah)| {(213)

where we nssume thal there are A contributions, one for each nucleon, and
Asy (Paa) = (%‘}Fﬁd} is the projection operator for & spin ! particle of mass
M,_, (the residual nuclear system in 1his cnse) and Sp{FP) = (ﬁ“%) is the prop-
agntor of B spin 1 particle of mass Af (the nucleon in this case). The tensor for a

single nucleon, W,ﬂ, is

& m
N _caf_ SPx T . _p, -
W =g j GoE; . 2B+ Ex Py - v)

TN (P P )Se (P Yuhime (P + 417 S ()W (P PX ) (24)

where E: is the average of the square of the quark charge, and we assuine that the
spectator system with fixed mass my lias spin zero. An imporiant feature of this

method is that both energy and momentum are conserved at every vertex, and hence



the four-vecior q transfereed 1o the quark is identical to the g transferred o the
unclens, remaving ambiguities or effects of the kind encountered using instant form
treatments employing the de Forest [13] prescription. Also, we are assured that the
% which enters into the & function in {2.4) is equal to My — E, _y, o thal the
comvalution formmia (2.3) is an exact stalement of the fact that the only difference
between seattering from a bound mucleon and a free nucleon is that P? # M7
One of the difficulties wilh the covatianl formalism, in which the struck quark
is initially off-=hell, is that the elementary current “operator” «, does not conserve
enrrent.  This could he corrected by introducing the current conserving operator
9./ but such a procedure is ad hoc, and does not do justice to this appronch,
where it hns recently been learned [19] how to assure current conscrvation naturally
hy including interaction currenta and final state internctions. We postpone this dis-
custinn for n later lime in the expectation that these terma can be shown to vaninh
in the DIS limit, justilying some effective treatment such as the one we are using. In
any rase, expanding the virtual photon in terms of its four-polarization vectors, na
discnssed in Wel [21], leads to the observation that all berms proportional to g, can
he dropped. making the use of the effective cnrtrent operator ¥, — q42,./q* completely
equivalend 1o using ¥,
From studies of the relativistic equation satisfied by T4(F, Pa_1), we can derive

the following relativistic normalization condition [22]

A BPyy My T
(.Y f A a1 p
A (QMA) (2n) (E‘,._,) trace[AMLl( a-1)

w Tl P\ P )Sml Py Su(PITALP, PA—I)] . (2.5)

Note that this is a different condition from that oblained in the light front formal-
jem It invelves the charge {henre the operator 4°) instead 3f the () component
of the current (7% - 37} Hewever, our final result will be almost equivalent to the
normalizalion oblained in light front theory (=ee helow).

While the relativislic wave functions are known for the deuteron [23], this is not so
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for complex nuclei, so we approximate Eq. (2.3) and (2.5) buy introducing a covariant

nuclear spectral function, p4,

Sl PITalP, Pacay ARp, (Pa T Al P Py ) Sl P)

1
= pal P' M} ) g Am(F) (2.6)

where P? # M? in the projection operator on the right hand side (RIS} of the
equntion. The matrix product on the LIS of the equation is the relativistic density
matrix of the bound nucleon, and the equalion says that this can be approximated hy
the density matrix of a pure spin .!‘ system with four-momentum P. The remnining,
apin independent, scalar function py can depend only on P? (provided Ay _y is fixed).
In fact, the relativiatic structure of the nuclear target will result, in genernl, in a mors
complicated spin dependence for the density matrix, but if the spin of the target
is zero, the approximation (2.6) should be very good. [For the atudy of the spin
dependent EMC effect, Eq. (2.8) would not be sufficient.]| Wilh thie definition, the

convolution formula (2.3} reduces to

a_ {1 APy (May 1 ag? N
wi = (i) [Ty (5 ) eaP o Mi WL (27)

N, . .
where W, is the spin averaged nucleon structure function for & bound nucleon

1
wh = 5 trace [wh Am(P)] {2.8)
The normnalization condition (2.5) similarly reduces to

(AN P (Maa) (To ot a2
A’(zM,) (2x) (E,._,)(M) PalF My) (29)

The next step is to introduce a quark spectral function, py, similar to in Bq.

{2.8), but with a different notmalization

Sm.(P)FN{P‘l"x)AM{P)F;(P-PX)SI.(P)IPN(P.",P;)("H" Al (21



This equation relates the relativistic densily matrix for a quark in a spin averaged
nucleon (written on the LIIS) to the product of a scalar speciral function of the two
variables p? and p%, multiplied by the relativistic densily matrix for a pure spin !
parlicle of four-momentusn p. This is the simplest way of treating the apin, and is
consistent with both the parton and nuclear binding models.

Taking, the Bjorken limit, defined by @* and » — oo with =z = #;; fixed, and
choosing a ceordinate system so that g = (v, 01,9}, leads to the following approxi-

malions

Q-
52{ Hiimet B+l — vt — 1)
HE + Ex ~ Po~v)— §{(Mz - p.)
E —v
QP Mz
p Pl (211)
where Lie sutn over A is 1he same weighted sum which occura in the definition of Wy,

Fq (23) Note that the light cone variable p_ = po — p. appears naturally in the

energy conservation relation This suggests defining the momentum fractions y and

z hy
px). = P (1) (Pa) = Ma(t - 2)
p. = Py P = %—ﬁz (2.12)

We cmphasize that our covariant formalism is not related directly to light front dy-
namics, and hence these momentum fractions should be viewed only as convenient
substitutions for the p_ and P. varizbles, motivated by the appearance of these vari-
ables in the energy conserving delia function. Furthermore, the momentun fractions
should be segarded aa defined by the on-shell four momenta py and Py.y so that all
[our components of these momenta are known, and later we will be able to express
tpx )y and (Pyi)y in terms of y and 2. Finally, note that even though y and z are
defined by (py ). and (P4 1), their relations 1o p_ and P_ are exact, because energy

and mowmentum are conserved al every verler
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Wilh these definitions it is straightforward 1o obtain the following expression for

Filz) = vWp

_ &k, dﬁ My . =F B 1_41\7(:5'
e = [ o (—““(,z_z) M)pA(P.M:v.) [a FRw k6= 0
Efdz flz.7) (213)

whete ky = Py k = (k.. 2), flz,z) 52 shorthand notation for the entire integrand
which will prove useful later, and ‘F_;‘v(y,k] is the structure fanction of a bound nu-
cleon, which depends explicitly on the nuclear motion through p?, which is a function
of k:

v d*py

FF(y, k) =%} -5/ i@=r

palpt (k) p%) - {2.14)

The normalization condition (2.9) similarily reduces to

0
= 5’-2%;; ((T‘f—’:)—‘M) pa(PL ML) {2.15)
To obtain these equations, il is necessary to express the integration over (py), and
(Pa_1), in terms of y and 2, which can be done using (2.12) and the energy relations
Ex = \/ﬁ_ﬁs} and Eqy = VM3, + P‘}_i. Also, to obtain (2.153) from {2.5)
observe that the faclor of Fy in the numerator of (2.5) can be replaced by PP =P
because the additional factor P, integrates io zero.

Qur results (2.13) and (2.15) ace similar to those usually obtained from the parton
model, with & few impotiant differences. The mosl significant of these is the explicil
dependence of the bound nucleon structure fanction, F¥, on the momentum of the
bound nucleon, k. As we will show now, this dependence gives additional corzections
to the EMC affect whick, to the best of our knowledge, have not been previously
digcussed. If these new effects are ignored our formula reduces to a form identical
to the standard convoluiion formula. Ancther difference, which is not numerically
important, is thal the eange of inlegeation over the variable z is not the same.

To obtain a practical formula from Eq. (2.14), we exploit the fact that it displays

the nucleon structure function as a product of two terms, the “kinemalic factor” (—i‘fl—ﬁ



ane the inlegral over the unknown function py of p?. From the diagram shown in

Fig 1eh, and the definilions {2.12), it is a simple niatter to show that

m? iy pl l” -!;|m§, Vky - p )} — w(M? HEDY gy MPA
1 -
= tolu)+ yMO b (] - 2y Ky 4 y7RY) (2.16)

where talyt = m} + (Y- m}y — yM? and A is

1 f (M3, +kl) M3
= i (z—ﬁlf + MR- 17‘ . (2.17)

Note that & = 01if the nucleon is al rest, and there is no nuclear binding. The integral
over dipy can he reexpressed by shifting f) — g1 + yi:._._. giving the following simple
form:

Tk =y [ a¢

ealy) LuMIA Eﬁ'ﬁi pn(mi - ¢, P’t) : (2.18)
A similar formmla (with A = 0} holds for the free structure function FM{y).

tising Feq. (2 IR) it ia therefore possible to expreas Fr(y,k) in terms of the free
steneture function F¥(y), evaluated at a shifted value of y. The shifted value, denoted

by y'. satisfirs the equalion

Eoly) + yM*A = &(y) (2.19)

This transfarmation depends on the parameter m%. The condition that the quatk be
bounel is that my + my 2> M, and it seems most appropriate, in the DIS application,
tn tegard (e scattering as taking place from a cutrent gquark, in which case it is
rrasonahle 16 (ake m, = 0 and my > M. The physical picture emerging from this
choiee is that the spectators and glue remaining behind constitute “most” of the
witelean, and hence most of its mass. 1l my > M the transformation determined by

{2.19) becomes

r F] 71’!} ! m} !
et aly) +yfatle) - f'(y}=§ (1-y)+ M;m‘*!lﬁ -

(2.2m)

Since the y? factor in front of Eq. (2.18} does not get transformed, the transformation

law is:
b}
FFly.k) = —;—’,—,F,"(y'). (221)

This result, when combined with the basic convelution formula (2.13), will he referred
to na the “fixed mass™ formula, and the fact that y* # y in {2.21) is an additionnl
consequence of nuclear binding which seems to have heen overlooked in previous
treatments using this formalism.

The fixed mass formula (2.21) assumes n fixed mass m%, which is a parameter
unconstrained by the derivation except for the requirement that it be larger than
M2, I this maas is infinite, then the transformation (2.26) reduces to ' = y, and
the convolution formuln reduces to the familinr form obtained by many previous
investigators. However, the physical picture of the process given in Fig. 1d suggests
that the minimnal value m% = M7 in a better choice, and if my in finite, ¥' > y,
as shown in Fig. 2 for an illusteative case. Since the free nucleon structure function
decreascs as y incrennes (at least nt Inrge y), this new result will predictl a larger EMC
effect, Thia is shown in Fig. 3, which givea the integrand f(z, 1), Fq. (2 13), for tron,
evaluated at # = 0.7. The dotied line is the old result (¢ = y}, and the new result
{v' > y) is smaller, particularly at large z. The resulting EMC eflect will be larger.

The model also suggests that a different convolution formula should hotd for the
gea nnd valence contributions. Since the sea contribution hna at least four spectators,
we might expect the effective value of my = 2m;. and this greatly reduces the EMC
contribution for sea quarka (as will be discussed in the next section).

Finally, the fixed mass formula is only an approximation to diagram (1d); the full
enlculation requires that we integrate over m}k, weighting the integral by the appro-
printe phase space Inctor (lwo body for the valence contribution, and four hody for
the sen contribution). If the dependence of the vertex function on mY can be ignored,
this procedute gives an answer independent of the detailed structure of the nucleon.

3

Making the approximation that the two body relativistic phase space ‘ff{:}u— na

x

11



constant (which is good because of the rapid rise of Uhe square root), the structure of
{2 18] shows that the m?% inlegral scales like 5 giving an improved transformation

Jaw for the valence part
T ! W ,
Fily. k)= y— ;'}'F:v(!l ). {2.22)

‘This resubl, when used in the Lasic convolution formula (2 13), will be referred 1o as
the "phase space” formula. The sea contribution involves a four body phase space
infegral, which is a convolution of three two body phase space factors, and does not
scale unless all masses aze ignored. I we make this naive approximation, just to get

a leeling for the eflect of the four Lody phase space, it scales like (;’_f;)’, leading to

f 2

Ffily. k) = 3(%!55{5 Fiy) . (2.23)
However, this transformation law gives an infinile contribution from the sea quarks
as r > 0 (which implies y --+ 0) because in this limit the ratio y'/y is very large.
Physically, this arises because the formula (2 18) is independent of my at y = 0,
and the phase space integral diverges. {Even the valence contribution is unreliably
evaluated at (his point, but this is less serious because the valence patt of FY is also
zern al y -- 1] Since the sea quarks make important contributions at small z (o1 y),
we conclude that we do not yet have a reliable calculation of their contribulion, and
this part requires further study.

We now lurn to a discussion of the numetical results obtained with the new

convululion formuta.

11§ NUMERICAL RESULTS
Figure 4 shows the resulis for several different cajculations of the EMC eflect for
an iltustrative nucleus {'*("}. The data are from Rel. [24]. All of these calculations
were carriedl out using Uhe same nuclear model 7, 8] in which the {non-relativistic)
spectral funclion is assumed io be composed of two parts: (i) contributions from

the suin over the discrete hound states of the A - 1 system, and {ii) more complex
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configutations including A — 1 breakup channels. When correlations are included in
the ground state wave function, both of these configurations will play an important
rale, and guided by recent experiments and theory, the nuclear model assuines that
80% of the spectral function comes from the conlributions of discrete final states,
with an avetage removal energy of < Ey >= 23 MeV (for 117}, and the remaining
20% comes from the breakup channels, with a mean removal energy of < E; »= 153
MeV, giving an oversil average removal energy of < E >= 49 MeV (sce Ref. [7, 8}
for details). The calculation of Ref. [7,8], which uses the usual convolution formula
(identical Lo ours if y' = y) and is our standazd of comparison, i3 the dotted line in Fig.
4. This calculation already gives a larger contribution from nuclear binding (because
of the effect of correlations) than most previous ones, yet falls short of explaining the
full effect at large =, where it should work best.

Two of the remaining fous curves (the shori and long dashed lines) in Fig. 4 use
the “fixed mass™ formuls described in the previons section, and two use the ‘phase
space” formula (the solid and dot-dashed lines). As we discussed above, Lhe phase
space formnula is preferred, and the two fixed mass cases are presented {or comparison
only. The long dashed curve is the fixed mass result when both the valence and sea
quark contributions are evaluated with the same fixed mass my = my = M. This gives
the maximum eflect possible, and deviates sirongly from the experimental dats nt
small . This deviation is due ahmost entirely to the sea conteibution, as illusirated
by the short dashed curve, which shows the fixed mass resuft when m; = M and
g = 2M. The choice of a larger value for my is strongly suggeated by the model,
and shows how sensitive the fixed mass formula is to the choice of m, {note that the
two fixed muass curves are almost equal for = > 05, a reflection of the the fact that
the sea gnark contribution vanishes there).

Hawever, cven the valence contribution is over emphasized by the fixed mass
formula when we choose mz = M. A mose realistic result is obtained from the phase

space formula, and Lhe solid line shows the result when this formula (2 22) is used for

=



the valence part, and the sea part 13 nol sneeared (no EMC cffect]. [Thie Intier idea
is suggrster by the absence of any ohserved EMC effect in Drell Yan processes [25].
which are dominated by sea contributions, but if we smear the sea part with a fixed
mass m, = 2Af, the result ir guile similar Lo Lhe curve shown.] This is Lthe trealment
most [aithful to the physics contained in our approach, and hence is our theoretically
prelerred tesult. Finally, il we smear the sea part using {2.23), end use {2.22) for
the valence parl, we ohtain Lhe dot-dashed curve. This gives nn unrealistic result at
r = O, as explained in Sec. 111, and iltustrates once again the sensitivity of the nea
part in ihe treatment of the m, dependence.

Fignre 5 shows how the results of Rel. [7,8] and the preferred resulis of this paper
compare with the data {24, 28] for lour illustyntive nuelei: *He, 12C, **Ca, and "Fe.
1nt ench case the mean temoval energies and spectral functions of Ref, [7,8] were used.
Nole thal the large = data are systematically well explained by the new convolution
fermnla, bt that the predicted effect is too big at low =.

Note that n feature of the tezults shown in Figs. 4 and 5 is that {0) # 1. This
is a ronsequence of The structure of the basic convelution formula (2.13) and occura
heeause of The hehavior of the integrand as y,y' — 0. It does not reflect any violation

of haryan eonservation, which is insuted by the normalization condition (2.15).

IV. CONCLUSIONS AND DISCUSSION

e derivation of the convolution formuls given in Sec I1, and the results shown in
Figs. 1 and 5, suggest 1hal nuclear binding can indeed explain the EMC effect at large
s In this region only Lhe valence quarks can contribule, and the additional binding
elfects which we find arp sulficient to give the extra contributions needed to reach
agreement with dala. Nole that the resulis shown in Fig. 4 are rather insensitive o
how the valence parl is treated, and all methods give a substantial new contribation.
The resnlts given in Fig. 5 show that onr success with '2C" is replicated for an
dlnsiralive sct of nuelei. The suceess with °Ca and " Fe is particularly striking.

“T'he same cannol be said for the descriplion of the low = region. Here the addi-
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tional effects spoil the rather good description obiained in most previous calculations.
This may be due to the fact that many other processes contribute to this region, in-
cluding the sen conttibutions and possible contributions from the mesons which partly
account for the nuclear force, and are in any case present in the nuclear medium. We
take the sensitivity of our model Lo the way in which the sea contributions nre handled
ns a gignature of the fact that a better deacription is needed before it is possible to
carry out n reliable calculation of the EMC effect in this region. The modef itsell sng-
gests additional work which needs Lo be done, including (i) the development of a mote
microscopic description of the sea contribution, (it} a detailed treatment of the addi-
tional interactions which are known Lo contribute because of gauge invariance (final
state inleractions and interaction currents), with a possible demonstration that they
do not contribute in the DIS fimit, and (iii) inclusion of meson (pion) contributions
and the restoration of the momentum sum rule.

There are some indications that the pion contributions may have the hehavier
needed to coerect the low z results. Using the estimate worked out by Llewellyn
Smith [4] (which may, however, not apply here]) it looks like a small pion enhancement
of 4% per nucleon would bring the ratioe R up to unity al £ = 0. It is known that
a pion enhancement will only contribute at small 2, but the toy model worked oul
in Ref. |6} suggesis that this contribution might well extend out to = = 0.6. Such
a contribution would also correct the violation of the momentum sum rule which is
a feature of the present result. Furthermore, a small pion enhancement may not he
contradicted by the recent Drell Yan mensurements {25], which show that the EMC
effect for sea quarks must be very small. Before any definite conclusions can he
drawn, a completely new calculation, in which these effects are treated in n inanner

congistent with the covariant formnlism, is needed.
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FIG.1. The vertex functions and Feynman diagram which atre used in the derivation
The valence (a} and sea {b) vertex functions have one quark with four momenttun p off-shell
(represented by the dark line) and the temaining spectators on-shell. The vertex function
for the nucleus {c) has one nucleon off-shetl (the dark line) and the residunl A — 1 system on-
shell The Feynman disgram (d), with the momentas labeled, includes the off-shell nucleon

structure function (inciosed by the oval).



FIG 4. The ratio R of Fi {for '2C) divided by 6 x FP (for the deuteronj plotted as

n function of the scaling varinble x. The five curves are discussed In the text. The data are

from Rel. [24].
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FIG. 5. The ratio R of F{ divided by A/2 % FP for *He, '*C, *°Ca, and 58 Fe. The
dotted lines are the calculations of [T, 8], given for comparison, and the solid lines aze the
hest results of this calculation (with the phase apace formula for the wnlence quarka and no
EMC effect for the sen quarks) The two curves for 1€ are identical to the corresponding

cases shown in Fig. 4. The data are from Rel. [24] (diamonds) and Ref. {26] (boxes)



FIG. 2 The variable y' ploted as & function of the nucleon momentum fraction z for

r =01, my = M and different values of k, = 0. (solid), . {dashed), 3. (dash-dot}, and

4 5 (short dashed) fm~}. The dotted line is y* = y, showa for comparison.
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FIG. 3. The integrand f{z,z) for iron, Eq. {2.13), evaluated at z = 0.7. The dotted

and s0lid lines are the same cases discussed in Figs. 4 and 5.



